175 research outputs found

    Applying electron backscattering diffraction to macroscopic residual stress characterisation in a dissimilar weld

    Get PDF
    AbstractDissimilar metal welds are complicated in nature because of the complex microstructure characteristics in the weld fusion zone. It is often necessary to know the phase distribution in a dissimilar metal weld especially at the interface such as fusion zone and heat affected zone to be able to predict the behaviour of the joint and its fitness for service. In this paper, a dissimilar metal weld made between ferritic/martensitic modified 9Cr-1Mo steel (P91) and austenitic AISI 316LN stainless steel using autogenous electron beam (EB) welding was analysed. The weld fusion zone has a local segregation of bcc and fcc phases. The EBSD technique was applied to determine the volume fractions of each of these phases in the weld fusion zone. This information was incorporated into the analysis of neutron diffraction data from the weld zone, and the macro-scale residual stresses were calculated from phase-specific stresses arising from the welding process. The results indicate that the overall macroscopic residual stress distribution in the weld centre is predominantly compressive in nature driven by the solid-state phase transformation of the weld pool during rapid cooling, with tensile peaks pushed adjacent to the heat affected zone (HAZ)/Parent boundaries on both sides of the fusion zone

    Counting and computing regions of DD-decomposition: algebro-geometric approach

    Full text link
    New methods for DD-decomposition analysis are presented. They are based on topology of real algebraic varieties and computational real algebraic geometry. The estimate of number of root invariant regions for polynomial parametric families of polynomial and matrices is given. For the case of two parametric family more sharp estimate is proven. Theoretic results are supported by various numerical simulations that show higher precision of presented methods with respect to traditional ones. The presented methods are inherently global and could be applied for studying DD-decomposition for the space of parameters as a whole instead of some prescribed regions. For symbolic computations the Maple v.14 software and its package RegularChains are used.Comment: 16 pages, 8 figure

    The uptake of selenium by perennial ryegrass in soils of different organic matter contents receiving sheep excreta

    Get PDF
    Background and aims The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage. Methods Perennial ryegrass (Lolium perenne) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry. Results The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se. Conclusion This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass

    Compaction, aeration and addition of mycotoxin contaminated silage alters the fermentation profile, mycotoxin content and aerobic stability of ryegrass (Lolium perenne) silage

    Get PDF
    This study investigated the effect of compaction, aeration and addition of a naturally mycotoxin contaminated ryegrass silage (MCS) containing 1803 µg/kg DM penicillic acid, on the nutritional value and mycotoxin content after ensiling and subsequent aerobic stability of ryegrass Lolium perenne silage (second-cut, June 2020, UK). Mini silos (30 L) were filled with differential compaction (500 kg FW/m3 and 333 kg FW/m3), aeration by injection of air (1L per 48h for 30d then 1L per 7d) and addition of MCS (1.5 g/kg FW ensiled forage) in a 2×2×2 factorial design. During ensilage, mean CO2% (kg FW) in the aerated silos increased with low compaction. Crude protein (CP) increased and ash decreased with aeration. Mean silage fermentation end products acetic (AA), lactic (LA) and propionic acid (PA) concentrations increased with MCS. PA concentration increased with aeration/low compaction. LA decreased and ethanol increased with low compaction. Mycotoxin profiles differed between the silages on opening and after 14-days incubation in aerobic conditions with disappearance of fusarenon X and penicillic acid and appearance of mycophenolic acid and roquefortine C (318 µg/kg DM and 890 µg/kg DM). Addition of MCS, increased the concentration of penicillic acid on opening with an interaction with aeration (80.6µg/kg DM MCS × aerated, 40.0 µg/kg DM in the MCS × sealed). Aerobic stability was affected by aeration and low compaction with reduced time taken to heat to +5°C and +10°C above ambient temperature, higher rate of increase in pH and higher cumulative temperatures to the first peak temperature. Higher mycotoxin concentration at opening had a similar effect increasing time to heat +5°C and +10°C above ambient temperatures in aerobic conditions. Regression analysis showed predominantly direct relationships between silage fermentation end-product concentrations and aerobic stability. This study revealed interactions between silage bacteria and fungi activity from the concentrations of fermentation end-products and mycotoxins during ensilage and subsequent aerobic spoilage. The results supported current best practice for silage making, promoting conditions for improved preservation and aerobic stability. The addition of MCS had unexpected positive effects. However, factors associated with the MCS benefiting aerobic stability were not determined

    A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    Full text link
    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 Feb 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature T<20 MK, post-flare loops

    Intersection Graphs of L-Shapes and Segments in the Plane

    Get PDF
    An L-shape is the union of a horizontal and a vertical segment with a common endpoint. These come in four rotations: ⌊,⌈,⌋ and ⌉. A k-bend path is a simple path in the plane, whose direction changes k times from horizontal to vertical. If a graph admits an intersection representation in which every vertex is represented by an ⌊, an ⌊ or ⌈, a k-bend path, or a segment, then this graph is called an ⌊-graph, ⌊,⌈-graph, B k -VPG-graph or SEG-graph, respectively. Motivated by a theorem of Middendorf and Pfeiffer [Discrete Mathematics, 108(1):365–372, 1992], stating that every ⌊,⌈-graph is a SEG-graph, we investigate several known subclasses of SEG-graphs and show that they are ⌊-graphs, or B k -VPG-graphs for some small constant k. We show that all planar 3-trees, all line graphs of planar graphs, and all full subdivisions of planar graphs are ⌊-graphs. Furthermore we show that all complements of planar graphs are B 19-VPG-graphs and all complements of full subdivisions are B 2-VPG-graphs. Here a full subdivision is a graph in which each edge is subdivided at least once

    EUV Analysis of a Quasi-Static Coronal Loop Structure

    Full text link
    Decaying active region 10942 is investigated from 4:00-16:00 UT on February 24, 2007 using a suite of EUV observing instruments. Results from Hinode/EIS, STEREO and TRACE show that although the active region has decayed and no sunspot is present, the physical mechanisms that produce distinguishable loop structures, spectral line broadening, and plasma flows still occur. A coronal loop that appears as a blue-shifted structure in Doppler maps is apparent in intensity images of log(T) = 6.0-6.3 ions. The loop structure is found to be anti-correlated with spectral line broadening generally attributed to nonthermal velocities. This coronal loop structure is investigated physically (temperature, density, geometry) and temporally. Lightcurves created from imaging instruments show brightening and dimming of the loop structure on two different time scales; short pulses of 10-20 min and long duration dimming of 2-4 hours until its disappearance. The coronal loop structure, formed from relatively blue-shifted material that is anti-correlated with spectral line broadening, shows a density of 10^10 to 10^9.3 cm-3 and is visible for longer than characteristic cooling times. The maximum nonthermal spectral line broadenings are found to be adjacent to the footpoint of the coronal loop structure.Comment: 26 pages, 13 figures; Solar Physics 201

    The mineralogical composition of calcium and calcium-magnesium carbonate pedofeatures of calcareous soils in the European prairie ecodivision in Hungary

    Get PDF
    Abstract There is little data on the mineralogy of carbonate pedofeatures in the calcareous soils in Hungary which belong to the European prairie ecodivision. The aim of the present study is to enrich these data. The mineralogical composition of the carbonate pedofeatures from characteristic profiles of the calcareous soils in Hungary was studied by X-ray diffractometry, thermal analysis, SEM combined with microanalysis, and stable isotope determination. Regarding carbonate minerals only aragonite, calcite (+ magnesian calcite) and dolomite (+proto-dolomite) were identified in carbonate grains, skeletons and pedofeatures. The values relating, respectively, to stable isotope compositions (C13, O18) of carbonates in chernozems and in salt-affected soils were in the same range as those for recent soils (latter data reported earlier). There were no considerable differences between the values for the carbonate nodules and tubules from the same horizons, nor were there significant variations between the values of the same pedofeatures from different horizons (BC-C) of the same profile. Thus it can be assumed that there were no considerable changes in conditions of formation. Tendencies were recognized in the changes of (i) carbonate mineral associations, (ii) the MgCO3 content of calcites, (iii) the corrected decomposition temperatures, and (iv) the activation energies of carbonate thermal decompositions among the various substance-regimes of soils. Differences were found in substance-regimes types of soils rather than in soil types
    • …
    corecore